Angular Independence of Break Position for Magnetic Power Spectral Density in Solar Wind Turbulence
نویسندگان
چکیده
منابع مشابه
Ion-scale spectral break of solar wind turbulence at high and low beta
The power spectrum of magnetic fluctuations in the solar wind at 1 AU displays a break between two power laws in the range of spacecraft-frame frequencies 0.1 to 1 Hz. These frequencies correspond to spatial scales in the plasma frame near the proton gyroradius ρi and proton inertial length di. At 1 AU it is difficult to determine which of these is associated with the break, since [Formula: see...
متن کاملThe Solar Wind Power from Magnetic Flux
Observations of the fast, high-latitude solar wind throughout Ulysses’ three orbits show that solar wind power correlates remarkably well with the Sun’s total open magnetic flux. These observations support a recent model of the solar wind energy and particle sources, where magnetic flux emergence naturally leads to an energy flux proportional to the strength of the large-scale magnetic field. T...
متن کاملCompressibility in solar wind plasma turbulence.
Incompressible magnetohydrodynamics is often assumed to describe solar wind turbulence. We use extended self-similarity to reveal scaling in the structure functions of density fluctuations in the solar wind. The obtained scaling is then compared with that found in the inertial range of quantities identified as passive scalars in other turbulent systems. We find that these are not coincident. Th...
متن کاملPower and spectral index anisotropy of the entire inertial range of turbulence in the fast solar wind
We measure the power and spectral index anisotropy of magnetic field fluctuations in fast solar wind turbulence from scales larger than the outer scale down to the ion gyroscale, thus covering the entire inertial range. We show that the power and spectral indices above the outer scale of turbulence are approximately isotropic. The turbulent cascade causes the power anisotropy at smaller scales ...
متن کاملDissipation-Scale Turbulence in the Solar Wind
We present a cascade model for turbulence in weakly collisional plasmas that follows the nonlinear cascade of energy from the large scales of driving in the MHD regime to the small scales of the kinetic Alfvén wave regime where the turbulence is dissipated by kinetic processes. Steady-state solutions of the model for the slow solar wind yield three conclusions: (1) beyond the observed break in ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: The Astrophysical Journal
سال: 2018
ISSN: 1538-4357
DOI: 10.3847/1538-4357/aad9aa